

European Regional Development Fund

EUROPEAN UNION

Moving Bed Biofilm reactor: Case study Belgium

Implementation and results

Pieter Van Aken Nico Lambert Prof. Lise Appels Prof. Raf Dewil

Tile-drained agricultural fields

- 10 40 mg NO₃-N/L
- High flow rates $(7.5 15 \text{ m}^3/\text{d})$
- November April

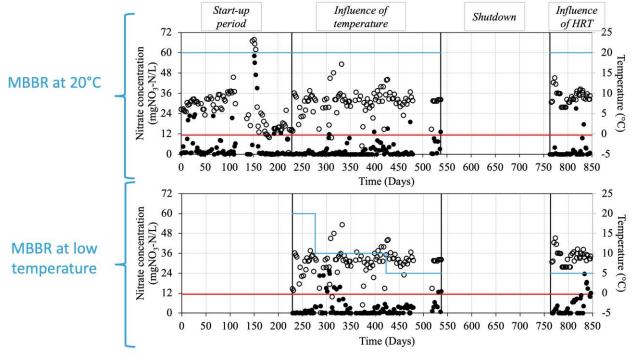
Greenhouse effluent

- 20 100 mg NO₃-N/L
- Low flow rates (3 m³/d)
- During the whole year

Design considerations

- \rightarrow Simple and robust system
- \rightarrow Low water temperatures (between 5 15 °C)
- \rightarrow Variable flow rates and nitrate concentrations
- \rightarrow Remote locations
- \rightarrow Low budget solution

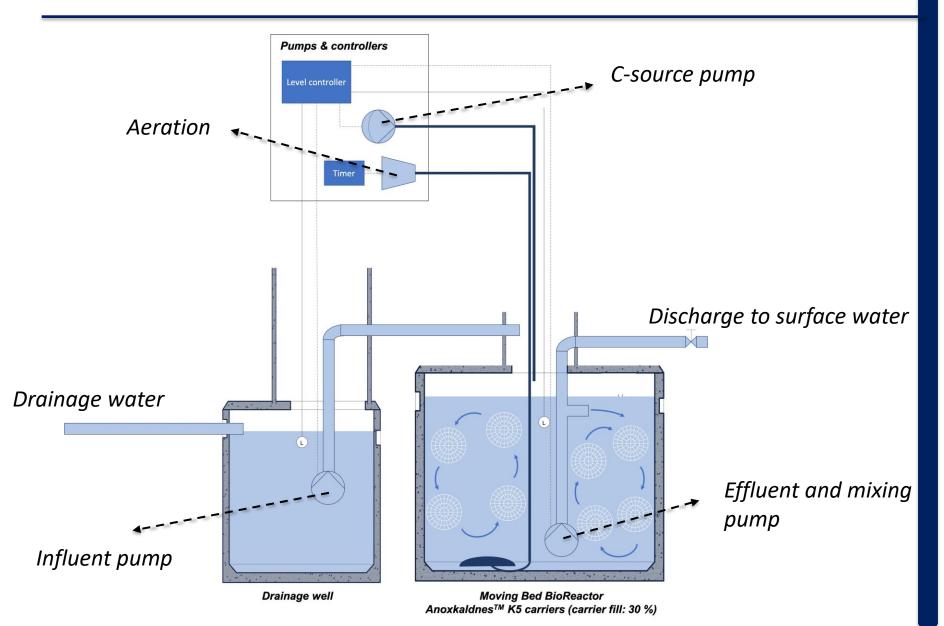
Discharge limit: 11.29 mgNO₃-N/L


Feasibility study: methodology

Long term experiment: 850 days

- Total Volume: 15 L with f_l = 0.85
- Carriers: AnoxKaldnes K1[™] (500 m²/m³)
- Carrier fill: 35%
- $C_0 = 150 \text{ mg NO}_3/L = 34 \text{ mg NO}_3-N/L$
- Glycerol-based carbon source

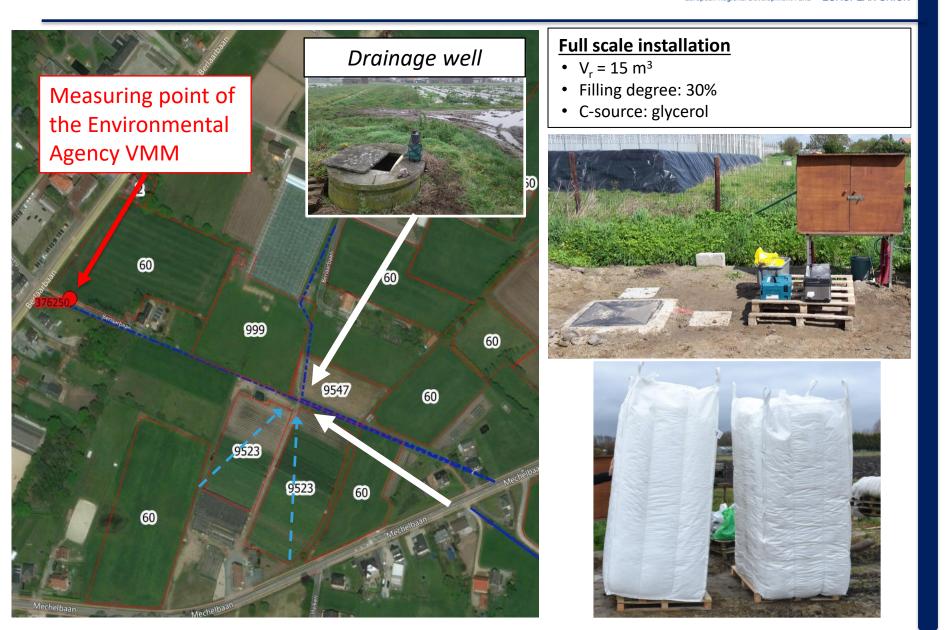
Feasibility study: concluding remarks



- Shortage of carbon source: Increase of effluent nitrate concentrations
- Low temperature: The MBBR is still able to efficiently convert nitrate
- Influence of HRT:
 - At 5°C, the removal efficiency significantly decreases by lowering the HRT
 - A minimum HRT of 8 hours is necessary
- Shutdown
 - The MBBR can restart immediately, even at 5°C

--- A feasibility study based on GPS-X simulations confirmed our conclusions ---

MBBR concept to treat agricultural waters



	MBBR OLV-Waver	MBBR Putte (MultiLeaf)	MBBR SKW (GONI)
Crops	Cauliflower and chrysanthemums	Lettuce and celery	Lettuce and cress
Type drainage water	Tile drained field	Greenhouse effluent (soil)	Greenhouse effluent (gutter system)
Property	Research Station for Vegetable Production	KU Leuven	GONI
Design	V_{MBBR} = 15 m ³ Q= 15 - 40 m ³ /day c _{NO3} = 30-45 mg NO ₃ -N/L C-source: Carbo ST	V_{MBBR} = 5 m ³ Q= < 3 m ³ /day c _{NO3} = 100-200 mg NO ₃ -N/L C-source: Carbo ST	V_{MBBR} = 10 m ³ Q= 20 m ³ /day c _{NO3} = 45mg NO ₃ -N/L C-source: Molasse
Goals	Reduction Carbon source Optimal mixing conditions	Reducing high nitrate content @ high HRT	First independent implementation

Field Case – Tile drained fields

Field Case – Tile drained fields

Influent

△ : Effluent

Δ A A

Δ

400

450

Low removal rate

 \rightarrow Carbon source

shortage

500

550

50

Season Season Key numbers 2020-2021 2021-2022 Duration (days) 221 167 Treated Drainage water (m³) 2910 2410 Nitrate removal efficiency 70% 74% Nitrogen removal efficiency 59% 63% Average nitrate concentration influent 32 29 (mg NO₃-N/L) Average nitrate concentration effluent 11 8 (mg NO₂-N/L) Maximum nitrite concentration effluent 18 15 $(mg NO_2 - N/L)$ Average carbon concentration effluent 120 74 (mg C/L)

Nitrate concentration in the surface water was above the threshold value.

 \rightarrow The farmer decided to pump directly from the drainage well to the water stream.

△ : Surface water after MBBR

150

200

100

Surface water before MBBR

۵<u>م</u>۵

Δ

150

\$ 1000

200

250

Time (days)

Summe

300

wate

No drainage

300

- : Discharge limit

350

400

450

500

550

50

40

20

10

0

30

25

20

15

10

5

0

50

Nitrate concentration (mgNO₃-N/L)

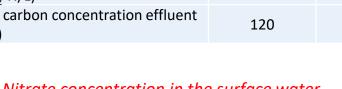
50

nitrite concentration

100

Low removal rate & increase of

 \rightarrow Solved by intensified mixing

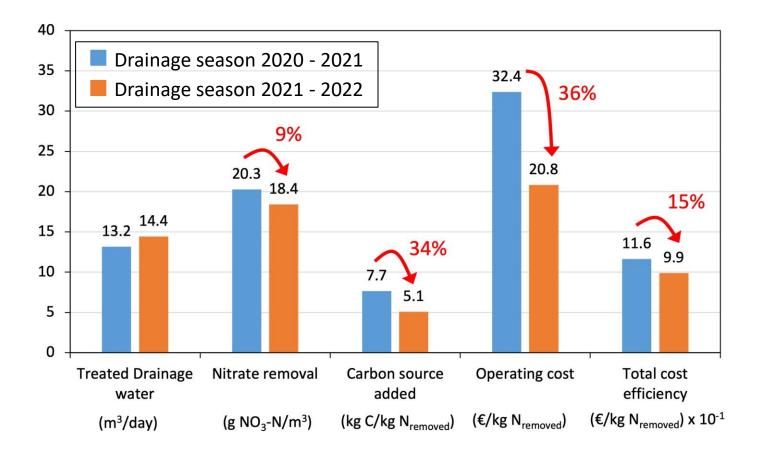

Nitrate concentration

(mgNO₃-N/L) 30

Surface water at measuring point from the Environmental Agency VMM

250

Time (days)



European Regional Development Fund EUROPEAN UNION

• Effect of reducing the amount of carbon source

Field Case – Greenhouse (DIY-concept) PCS

European Regional Development Fund EUROPEAN UNION

NuReDrain

1. What is a MBBR?

A Moving Bed Biofilm Reactor (or MBBR for short) removes nitrogen from water by converting nitrate into nitrogen gas by means of biological processes. A MBBR consists of a tank filled with water, in which plastic carriers are located that are set in motion (Photo 1Photo 1). The irregular and large specific surface area of the carriers forms an ideal habitat for various micro-organisms (Photo 2Photo 2). On these carriers grows active sludge (biofilm) and this carries out the denitrification.

A MBBR requires little maintenance and is simple to construct yourself with the help of this information sheet.

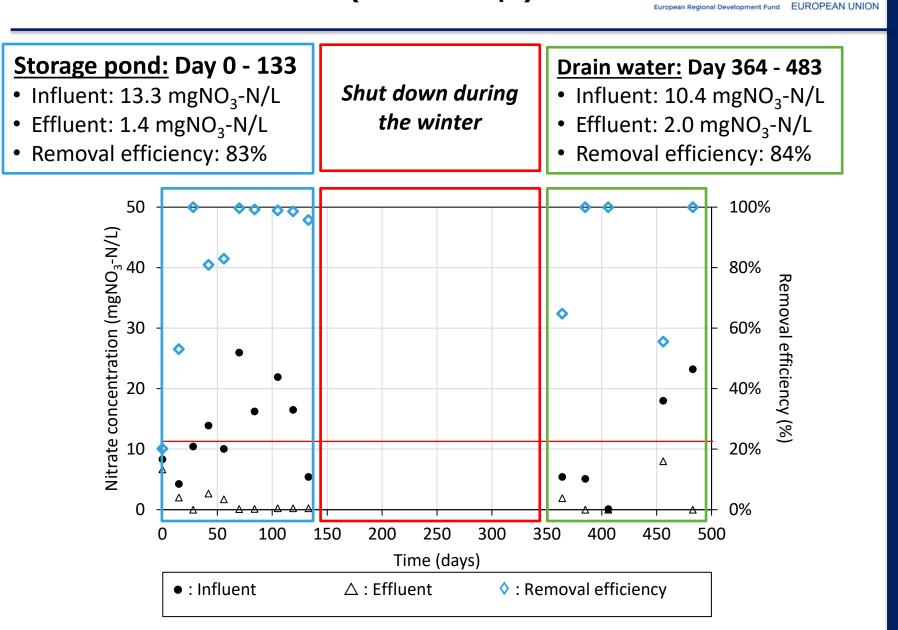


Photo 1: Set-up of Moving Bed Biofilm Reactor (MBBR) at PCS Ornamental Plant Research

Information sheet: "How do I build my own MBBR?" - Version date 28/05/2020 Drawn up in connection with the Interreg North Sea Region project NuReDrain. No part of this publication may be reproduced without the prior written permission of PCS.

Field Case – Greenhouse (DIY-concept) PCS

North Sea Region

NuReDrain

- Start-up period Shutdown
 - The first drainage season: removal efficiency is lower
 - The MBBR can restart immediately after a summer period
- Influence of temperature
 - The MBBR is able to efficiently convert nitrate at low temperatures
 - The underground concept limits the temperature fluctuations
- Challenges
 - Treatment of high concentrations
 - Carbon & biomass release to local water streams post-treatment?
 - Clogging of the carriers due to suspended solids (greenhouse effluent)
 - Economic feasibility for agriculture
 - Awareness and the limitations of the technology

European Regional Development Fund EUROPEAN UNION

Q&A